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Foreward

This report is Chapter X of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapter I-IV

originally appeared as technical Reports Nos. 77, 80, 82 & 85; these were

later extensively revised and then issued as Technical Sunary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center, University

of Wisconsin-l.hdison. References to I-IV mean the MC reports.
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Chapter X

Effects of Shear and Strain

1. Non-Uniformities.

An understanding of the response of a pre-mixed flame to non-uniformities

in the flow is important in many technological situations. To sustain a flame

in a high-velocity stream the turbine engineer must provide anchors, which

generate strong shear. The designer of an internal combustion engine is

concerned with burning rate in the swirling flow above the piston. Turbulence

is all pervasive and then the flame is subject to highly unsteady shear and

strain. These situations are extremely complicated, of course, and it is

unlikely that mathematical analysis will ever provide detailed descriptions;

those izust be left to empirical studies augmented by massive numerical computa-

tions. Nevertheless, analysis of the response of a flame to a simrle shear,

for example, can prc-ide useful insight into the interaction mechanism in

more complex situations. Indeed the answers to such elementary questions can

be used as a much-needed guide in studies of more complicated ones.

Moreover there are simple circumstances in which such analysis has direct

significance. A burner flame experiences shear in the neighborhood of the rim,

ahd its quenching depends on the local character of that shear. A flame

immersed in a laminar boundary layer experiences both shear, due to velocity

variations across the layer, and strain, due to streamwise variations, and its

quenching will depend on their local values.

For a constant-density flow the relative motion near a point is the

superposition of a simple shear and two simple strains (cf. Batchelor 1967,

p. 79). These two elementary flows, simple shear and simple strain, are

therefore basic to any discussion of the effect of non-uniformities on flames;



-2-

the present chapter is for the most part devoted to them. Only premixed

-f flames are discussed and, except at the end (Sec. 5), the formulation adopted

is that of near-equidiffusional flames as simplified in Sec. VIII.6.

The fundamental question is whether or not a flame can be extinguished

by a non-uniform flow per se . In Sec. IX.5 it was shown that the proximity

of a cold wall can quench an equidiffusional flame, the mechanism being heat

loss from the combustion field rather than the geometrical constraint imposed

on it by the wall. If flow non-uniformities can induce a similar heat flux,

quenching will occur with the cold unburnt gas replacing the wall as heat

sink. But even if they cannot, we may still expect unequal diffusion of heat

and reactant (i.e. X # 0) to provide other circumstances for which there is

quenching, since that is the case for the flame tips of Sec. IX.. When X

was sufficiently negative, the presence of a boundary quenched plane tips and

flame curvature quenched axisymmetric, w'thout the help of heat loss.

2. Response to Simple Shear.

Consider a plane parallel flow which is uniform for y < 0 but

linearly sheared for y < 0, i.e.

(W) = (Uf,O)

where

l for y > 0,

(2) f(y) =
l-wy for y < 0.

In the limit U + 0 the equations with which we have to deal are

(3) f (T,h)/ X= Lo(T,h + XT) for -w < y < F(X),
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(4) T = T* = HI , f Dh/x LO(h) for F(X) < y<

these being the modifications of equations (IX. 31,32) which take account of

the flow (2). With them go the jump conditions (IX.34), together with the

boundary conditions (IX.36) and

(5) T - TI, h + 0 as y+- .

* The uniform part of the flow can support a steady plane deflagration

wave inclined at an angle such that the normal component of the gas speed

equals the adiabatic flame speed, and this is assumed to be the form of the

combustion field for y large and positive (Fig. 1). In other words, the

initial conditions (IX.29,30) still hold, and indeed the first for

-= < y < F(O). As the flame approaches the x-axis it is influenced by the

shear as soon as its preheat zone penetrates the lower half-plane. The

increased gas speed there may be expected to deflect the flame, so that its

slope decreases.

The above formulation is due to Buckmaster (1979a), who reaches the

following conclusions. For some values of the shear gradient w and

Lewis-niuber parameter X, the slope actually decreases to zero. At that

point the flame speed is zero and, according to the hypothesis of Sec. IX.4,

quenching occurs. Invariably the quenching point lies in the uniform region

althoug;h the preheat zone has, of course, penetrated the shear regicn. For

the remaining values of w and X the flame is never quenched even though it

I
may fail to renetrate the shear region. A rationalization for not being

quenched in the shear region is that the non-uniformity, as measured by f'/f,

is a maximum at y = 0 so that, if the flame manages to cross the boundary,

it can-survive the ever-weaker non-uniformity beyond. Certainly there is a
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solution of the governing equations as y + -w corresponding to a locally

plane flame propagating with unit speed (cf. Sec. 9.5).

Clear evidence of the dichotomy is shown for w = 5 by the numerical

results plotted in Fig. 2. For X = 0 or 5 the flame penetrates the shear and

shows no sign of quenching; indeed no solution showed the flame speed

approaching zero in y < 0. But for X = 10 the flame speed falls to zero

at the point Q outside the shear region. The figure also shows that the

shear has more effect on the flame as \ increases, in contrast to flame

tips (Fig. ix.6) where the boundary, i.e. symmetry line, has less. Moreover,

the present trend does not agree with that for slowly varying flames in Sec. 5.

The effect of increasing w can be seen from the limit w - c. There is

then a fully developed combustion field, i.e. an asymptotic solution as

-X , in which the flame lies at a definite level in y > 0 and T,h

are independent of X . In fact, in the shear region away from the bournda-r

convection dominates for all X , so that

(6) 3T/ax = ah/x = 0 for y < 0,

i.e. there is no dependence on X anywhere. The problem is therefore redluce

to one in y > 0 only, under the boundary conditions

(7) T = T1, h = 0 on y = 0.

In the limit x - the initial conditions may be ignored and the system then

has the solution

(8) T = T1 + YIy/F(-), h = - XYIy/F() for 0 < y < F(-),

(9) T = T* = Hi, h = -XY1  for F(-) < y <

I: + .........+ .....' ........ ........... ....................,. ....... .. ... ..... ......... ....., I
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where

(10) F(-) : exp(XY1 /2T2)

is the asymptotic height of the flame. The expression (9b) violates the

boundary condition (IX.36) for h, showing that the limits y and X -

* do not commute. There is an adjustment at large values of y, which depends

on the history of the flame; but that is of no importance for our purposes.

F(-) is large even for moderate values of X. On the other hand,

inspection of Fig. 2 shows that flames are first affected by the shear when

F is about 2. The implication when w = is that, for sufficiently large

X > 0, there is a minimum in F, i.e. the flame speed must have fallen to zero

at some finite value of X. Numerical solutions of the limit problem (Fig. 3)

point to X = 0 as the critical value: for X < 0 the function F decreases

monotonically to its asymptotic value (10), whereas for X > 0 it has a

minimum (which we have taken to imply quenching). We conclude that a

sufficiently strong shear flow will prevent a flame from reaching the boundary

y = 0 and actually quenches it for j> 1.

Eventually the limit equations break down and a new coordinate X/w is

needed, corresponding to significant diffusion in the shear region. Buckmaster

(1979a) argues that F increases again when X < 0 is sufficiently large,

which implies quenching for r sufficiently smaller than one also. However,

no numerical results exhibiting such quenching have yet been obtained.

3. Response to Simple Strain.

In contrast to simple shear, the.variation of the essential velocity

component in simple strain is in its own direction rather than at right angles.
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The distinguished limit of Sec. viII.6, in which the non-dimensional gas

velocity and the length scale on which it varies become unbounded but

their ratio remains fixed, leads to the governing equations (VIII.70). The

unit of the velocity gradient represented by E is that of the flame

speed divided by the thickness under adiabatic conditions. As we shall see,

a velocity gradient that is small on this scale has little effect on the

flame, whereas a large enough gradient extinguishes it.

Equations (VIII.70) hold ahead of the flame, i.e. for y > F(x). Behind

the flame we have

(11) T = T. = Hi , h = h. for 0 <y < F(x)

if (a) the wall is insulating or (b) the flame is located in equal opposing

jets (Fig. 4) so that

(12) Dh/ay = 0 on y = O.

(The condition ensures that wall quenching does not intrude.) For case (a)

the flame will in reality be imbedded in a boundary layer (unless the Fran:'.

number iz very small), so that the model is more directly relevant to case (b).

We must add the boundary conditions

(13) T - TI, h ) 0 as y o

and t - conditions (IX.34).

UI ~~>:x only appears in F there is a solution with the flame lyir,5

parllcl to y 0, the constant value of 2o boing given implicitly by

(jl) = 2-ed7 erfc d cxp[ 7(d e _ - d2 )],

21 7 erfc d



where

(15) B = (E/2), a = d F.

The solution ahead of the flame is

(16) T = T + erfc(y)/erfc dd
•for y > Fo

2 2 2e
(1) h h erfe(gy) + [$ye-0 y erfc d -de-d erfc(0y)]

(1) h=heerfc d erfc 2d

where

(18) h* = 2H 2n(2 erfc d).

This determination of h, also completes the description (11) behind the

flame.

Of greatest interest i$ the variation in stand-off distance F. with

the straining rate E (Fig. 5). There are two kinds of response, depending

on the value of X. For X < 4H2, it is single-valued, with F decreasing
1r

monotonically to zero at E = c , where

2(19) Ec = Irexp(-)L/2H9).

For E >E,, there is .no solution. For X > 4Ht
the response is double-valued

for some values of E ; and there is no solution beyond a value e, at which

Fo~h -onzero. Corresponding values of Ee  and Fe  for various values of

X are listed in Table 1 for the same parameter value 1 = 1.2 as in Fig. 5.

"I
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Table 1

X5.76 6.03, 6.48 7.03 7.52 8.05 9.05 10.02 11.02 12.02 14.08 16.00 !8.-0

F e 0 .23 .62 1.11 1.57 2.07 3.05 4.03 5.05 6.io 8.29 10.36 12. 5

E- .212 .194.170 146 .130 .116 o096 .082 .072 o064 .052 .04-4 *03

The physical picture is now clear. Suppose the strain is increased

from a small value sufficiently slowly for the combustion field to be quasi-

steady. The increase causes the flame to move closer to the stagnation point.

If X is large enough, it reaches the stagnation point for the critical value

and is extinguished. Otherwise extinction occurs for C, when it is

still a distance F away. In the latter case the lower branch of thee

response (where F increases with " )is unstable, as has been eho,,n by

Bucknaster (179b). (His treatmnt does not rule Out other parts of thc

response being unstable too, so that the extinction picture above may have

to be modified.)

The flame speed W (Fig. 6) i.e. the ga speed normal to the flame sheet,

has the value - F. As E +- O, so that F - m , it tends to the adiabatic0

value 1; when " c it vanishes, since F is zero. Like F it is
C 00

2 2
single-valued for X <4 11 and partly double-valued for X > 41. There is an

initial increase in W for X <-21 2; otherwise it decreases monotonically

until C = C or C • It is therefore possible for the flame to have ac e

speed greater than its adiabatic value, even thou-h it is being strctched

at a positive rate.

In short, there is a limit (depending on the Lewis number) to thc amount

of strain that a prenixcd flame can toleratis The corci,.i:'. is eosli~tent .it,

the experimental fact that a flame held at the front of a bloff body can he



blown off by increasing the gas speed sufficiently. Attachment is then

usually transferred to the rear.

4. Response to More General Non-Uniformity.

Reduction to a parabolic problem occurs for general non-uniform flows

in which the velocity is everywhere large but changes proportionately over

correspondingly large distances (Buckmaster 1979b.). An example is the

potential motion of a fast stream past a large cylinder, whose front stagnatio:

point was the subject of the last section. Such flows, when plane, are

characterized by velocity fields

(20) y = Uq(x/U,y/U);

letting U gives a distinguished limit in which y remains finite.

We shall see that the effective part of the limiting motion is, on the x,y-scai ,

made up of a fast uniform flow and a simple strain, both of which vary slowly.

Shear is ineffective, so that the term general straining motion is appropriate.

Take curvilinear coordinates with x measuring distance along one

particular streamline and y distance from it. Away from a stagnation point

these will be slowly varying cartesian coordinates, since the curvature of

streamlines is vanishingly small. The angle between the flame sheet and an

intersecting streamline is also small, so that

(21) X = x/U and y

are appropriate variables for T and h. Likewise the velocity field may

be approximated by
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(22) y = (Uq, -

where qo(X) is the speed on y = 0 and continuity has been taken into account.

Only leading terms have been retained, so that a simple shear due to variation

of the x-component in the y-direction is ignored. Uniformity breaks down at

large distances from the flame sheet, but it does not matter there. On the

x,y-scale the velocity relative to that at any point is a simple strain with

E= q (Sec. vIII.6). Together with the fast uniform flow (Uqo,O) at the

point, both of which vary with X , it makes up the effective part of the

limiting motion.

In the limit, only the approximation (22) enters into the governing

equations (XIII.62, 63), which become

(3 -- )(T h) = Lo(T h + XT).

The response to an arbitrary streamwise velocity qo( ) may be determined

from the computer as easily as that to simple shear (Sec. 2). Note that

equations (VIII.67, 68), which were used in Sec. IX.A, are the special case

qO F1 when the strain vanishes everywhere. The simple shear flows discussed

in Sec. IX.5 and Sec. 2 are not of the type considered here since changes of

the velociy field in the y-direction are large. As already noted, the analysis

breaks down at a stagnation point, so that equations (VIII.70) cannot be recovered.

Nevertheless, -,he stagnation-point solution in Sec. 3 has the required form for

large x, with q0 = x X, and hence provides initial conditions for any

qo EX es X - 0 when the boundary conditions on T and h are compatible.

h •



Two examples will be considered, namely

(24) q(x)( 5in x for 0 < X < i

The first corresponds to potential flow around the cylinder and both asymptote

X. If therefore the same boundary conditions as in Sec. 3 are imposed,

namely

(26) T + TI, h - 0 as y w,

(27) ah/y =0 on y = 0,

then the results obtained there provide appropriate initial conditions here.

Of course, behind the flame the appropriate solution of equations (23) has

T = T* = HI .

The flows (24) and (25) are quite different in nature. For the first

the stretch, represented by the Karlovitz number Iq6, decreases monotonically

from E to -E (Fig. 7a); but for the second it decreases from E to a

minimum of zero at X = I and then increases indefinitely (Fig. 7b). These

characteristics are particularly relevant to an examination of the flame

speed

(28) W ( F)'

which can deduced from the computations by numerical differentiation.

Fig. 7 shows that W increases monotoniclly for the flow (24); but

that for the flow (25) it increases initially, reaches a maximum around X 1,

and then decreases. It is hard to resist the conclusion that there is an



.1 -12-

inverse correlation between the changes in flame speed and stretch, at

least for moderate values of X. The correlation is not precise (as we

have already seen in Sec. 3): in Fig. 7b the flame speed achieves its

maximum exactly at X = 1 for only one value of X (which appears to be

zero). But the general trend is undeniable.

The computations for the flow (25) show that the decrease in W from

its maximum continues until zero is reached where, according to Sec. IX.h,

quenching occurs. The results therefore suggest the general conjecture that

a flame subjected to sufficiently strong and increasing strain will be

extinguished. Hitherto a sound mathematical basis for such a conjecture has

been lacking.

5. The Effects of Slowly Varying Shear and Strain.

The chapter ends with an examination of slowly varying flames under the

influence of simple shear and simple strain. For strain the results merge,

as j 1 ± 0, with those of near-equidiffusional flames, as X +±-; but for

shear they do not. We have no explanation to offer.

For simple shear, the E,n-coordinates of Sec. VIII.3 are now taken as

shown in Fig. 8. Then the velocity field to be inserted in equation (VIII.32)

is

(29) y = (Uf,O)

where 1 for n> 0

(30) f(n) ilwn for n <0.
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If

(31) n = F)

* is taken to be the locus of the flame, then for n <0 we have

(32) M = lU(l - wF)IF'I(l + F'2) Vl = U(l-wF)sgnF'(l + F'

if the latter is measured in the s-direction shown. Hence

(33) . u V l - jn - M V ' l = 2  sgn F'(l + F 2  r F "1/P F 2

and the basic equation (VIII.32) becomes

(3h) F" = k(l-wF)F 3 P M

where k is the constant (IX.21).

The corresponding formulas for n > 0 are obtained on setting W 0,

and then equation (IX.20), governing the shape of a flame tip in a tuniform

flow, is recovered (with tan = F'). The appropriate solution is

(35) F' = -tan a

corresponding to a plane flame, although a curved flame (corresponding to

the tip) is also available when Z is greater than 1. We therefore take

(36) F(O) = 0, F'(o) = -tan a

as initial conditions for the governing equation (311) in q < 0.

Fig. c shows the effccL of the shear. Fox- j <1 the flame is bent

towards the floi direction at a rate th.t increazes with w , but is never

actually quenched. On the other hand, the flanre bends away from the flow
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direction for f> 1, again at a rate that increases with w . These results

are consistent with those obtained flame tips in a uniform flow (Sec. IX.3),

where a rounded tip was possible for -I' >1 but not for t< 1. However, they

do not merge with those for a near-equidiffusional flame (Sec. 2), where the

turning ability of the shear increased with X. (The inconsistency of Secs. 2

and IX.4 has already been noted in the later section.)

We turn now to simple strain, i.e. stagnation-point flow, where the results

do merge with those for near-equidiffusional flames. The comparison involves

the so-called flat flames here; for < 1 it turns out that such flames can

tolerate any amount of strain, but for L>l there is a limit.

With axes as shown in Fig. 10, the velocity field with which we have

to deal is

(37) y

For the locus (31) we find

(38) M = P1E(EF' + F)/(l + F) 2 Vj 1  E(E - FF(1 +F

so that

= n _ _FF'

~L !Ln 1 n j- -l.1 (1+F 2  dE F +EF'

and the basic equation (VIII.32) becomes

(39) (2 + F2 )F" + (1 + F'2 )(F' - F) k(F + CF') 3 kn Mn,

where

S22(40o) k =- 2T*P 1f/b.

LL
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Solution of this equation requires two boundary conditions but only

one is obvious, namely the symmetry condition

(l) F'(O) = 0

The difficulty reflects the elliptic nature of the problem and, for determinacy,

" f some reference must be made to the far field. If, for example, we are dealing

with a fast flow past a correspondingly large cylinder (i.e. with C fixed)

then it is appropriate to look for a constant solution, corresponding to a

flame that varies on the scale of the cylinder. Such a solution is given by

2 21, with M -pF.
(42) M2tn M2 = - 2 /1 MnFn n 1n

Sivashinsky (1977), who considers the axisyimmetric counterpart of the

present problem, proposes that such a choice is correct in all circumstances

but there is no evidence for his view. Indeed, completely acceptable solutions

are obtained by giving F(O) a value that does not satisfy equation (42),

see Fig. 11. A constant solution is just a separatrix or an asymptote in

the figure.

Fig. 12 shows that there is always a unique solution of equation (42)

for b > 0 but that the condition

(43) E < -T 2

-T/eb

must be met for b < 0, and then there are two solutions. We conclude that

there is always a flat flame for-I< 1 but that there is a limit to the

straining rate for L >l. To reconcile these results with those for near

equidiffusional flames note that here f is measured on the scale 0- 1 so that
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the limit (43) tending to infinity as 1 i + 0 is (b -0) is compatible

with E remaining finite there as X (suggested by Table 1). On the
e

other hand, E as X + - agrees with the absence of a limit here forc
any JL> 1 (in particularlY= i + 0).

Fig. 12 could have been introduced after the general relation (VIII.43)

to suggest that extinction will occur whenever
Tt 2

(141) dA < >

A dT > be for b < 0.

However, without a guarantee that such voluminal stretch is possible, the

speculation would have been idle. Stagnation-point flow provides the first

example, and so far the only one. If we restrict attention to flat flames,

then the voluminal stretch is constant and equal to E . The condition (h4)

for b > 0 can never be realized but that for b < 0 can: if, when L is

greater than one, E is increased sufficiently slowly for the combustion ficl.

2to be quasi-steady, then extinction occurs when it reachers -T*/be.

These remarks apply only to the constant solutions in Fig. 12. The

non-constant solutions are available whatever the value of E or the sign

of b. No evidence was found of quenching in the computations (cf. Sec. 2)

i.e. the curves never became tangent to streamlines.
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